题目内容

9.已知函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{6}$个单位后关于y轴对称,则函数f(x)的一个单调递增区间是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

分析 由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ值,利用正弦函数的单调性可求单调递增区间.

解答 解:函数f(x)的图象向左平移$\frac{π}{6}$个单位后的函数解析式为:y=sin[2(x+$\frac{π}{6}$)+φ]=sin(2x+φ+$\frac{π}{3}$),
由函数图象关于y轴对称,可得:$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,即φ=kπ+$\frac{π}{6}$,k∈z,
由于|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
可得:f(x)=sin(2x+$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解答:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可得,当k=1时,函数f(x)的一个单调递增区间是:[-$\frac{π}{3}$,$\frac{π}{6}$].
故选:B.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网