题目内容

某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i次射击击中目标得i(i=1,2,3)分,3次均击中目标得0分.已知某射手每次击中目标的概率为0.8,各次射击结果互不影响.
(Ⅰ)求该射手至少射击两次并且击中目标的概率;
(Ⅱ)记该射手的得分为ξ,求随机变量ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:应用题,概率与统计
分析:对于(Ⅰ)求该射手至少射击两次并且击中目标,因为击中目标即终止射击,则该射手第一次没有射中第二次射中或者第一、二次没有射中第三次射中,根据相互独立事件的概率乘法公式即可直接求得答案.
对于(Ⅱ)该射手的得分记为ξ,求ξ的分布列及数学期望,因为第i次击中目标得1~i(i=1,2,3)分,故ξ可能取的值为0,1,2,3.分别求出每个值的概率,填入分布列表,然后根据期望公式求得期望即可.
解答: 解:(Ⅰ)设该射手第i次击中目标的事件为Ai(i=1,2,3),
则P(Ai)=0.8,P(
.
Ai
)=0.2,
∴该射手至少射击两次并且击中目标的概率为P(
.
A1
A2)+P(
.
A1
.
A2
A3)
=0.2×0.8+0.2×0.2×0.8=0.192;
(Ⅱ)ξ可能取的值为0,1,2,3.
ξ的分布列为:
ξ 0 1 2 3
P 0.008 0.8 0.16 0.032
Eξ=0×0.008+1×0.8+2×0.16+3×0.032=1.216.
点评:本题考查相互独立事件的概率乘法公式,考查离散型随机变量的数学期望的求法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网