题目内容
已知命题p:?x∈R+,使得x+
<2;命题q:?x∈R,x2≥0.则下列命题为真命题的是( )
| 1 |
| x |
| A、p∧q | B、p∨q |
| C、p∨¬q | D、p∧¬q |
考点:复合命题的真假
专题:简易逻辑
分析:首先,判断命题p和命题q的真假,然后,结合全称命题和特称命题的真假情况进行判断.
解答:
解:由命题p得:
∵x∈R+,
∴x+
≥2;
∴命题p为假命题;
由命题q得:
?x∈R,x2≥0.
命题q为真命题.
p∨q为真命题
故选B.
∵x∈R+,
∴x+
| 1 |
| x |
∴命题p为假命题;
由命题q得:
?x∈R,x2≥0.
命题q为真命题.
p∨q为真命题
故选B.
点评:本题重点考查全称命题和特称命题的真假判断,基本不等式和不等式的有关性质等知识,属于中档题.
练习册系列答案
相关题目
若0<a<1,则下列各式中正确的是( )
| A、loga(1-a)>0 |
| B、a1-a>1 |
| C、loga(1-a)<0 |
| D、(1-a)2>a2 |
设Ω为平面直角坐标系xOy中的点集,从Ω中的任意一点P作x轴、y轴的垂线,垂足分别为M,N,记点M的横坐标的最大值与最小值之差为x(Ω),点N的纵坐标的最大值与最小值之差为y(Ω).如果Ω是边长为1的正方形,那么x(Ω)+y(Ω)的取值范围是( )
A、[
| ||||
B、[2,2
| ||||
C、[1,
| ||||
D、[1,2
|
在△ABC中,若sinA=
,则cos2(B+C)的值为( )
| 1 |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、-
|
如果
+
=1表示焦点在x轴上的椭圆,则实数a的取值范围为( )
| x2 |
| a2 |
| y2 |
| a+2 |
| A、(-2,+∞) |
| B、(-2,-1)∪(2,+∞) |
| C、(-∞,-1)∪(2,+∞) |
| D、任意实数R |
设i是虚数单位,若复数满足zi=3-2i,则z=( )
| A、z=3+2i |
| B、z=2-3i |
| C、z=-2-3i |
| D、z=-2+3i |
若不等式ax2+ax-1<0对一切x∈R恒成立,则实数a的取值范围是( )
| A、(-∞,0) |
| B、(-∞,0] |
| C、(-4,0) |
| D、(-4,0] |