题目内容
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 4 |
| 3 |
(Ⅰ)求椭圆E的方程;
(Ⅱ)探究
| OA |
| OB |
| OA |
| OB |
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)把F2(c,0)代入
+
=1得y=
,从而可得|MF2|=
,|MF1|=
,由
+
=2a及a2-b2=c2=
2=2,可求a2,b2;
(2))①若直线l的斜率不存在时,易证:
•
=0;②若直线l的斜率存在时,设其方程为:y=kx+m,由直线与圆相切,得
=
,整理得3m2=4k2+4,联立y=kx+m与椭圆方程有(2k2+1)x2+4kmx+2m2-4=0,设A(x1,y1),B(x2,y2),由韦达定理及向量数量积运算可求结果;
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a |
| b2 |
| a |
| 3b2 |
| a |
| b2 |
| a |
| 3b2 |
| a |
| 2 |
(2))①若直线l的斜率不存在时,易证:
| OA |
| OB |
| |m| | ||
|
| 2 | ||
|
解答:
解:(1)把F2(c,0)代入
+
=1得y=
,
则|MF2|=
,由|MF1|:|MF2|=3:1得|MF1|=
,
又
+
=2a,∴a2=2b2,
∵a2-b2=c2=
2=2,
∴b2=2,a2=4,
∴
+
=1.
(2)①若直线l的斜率不存在时,易证:
•
=0,
②若直线l的斜率存在时,设其方程为:y=kx+m,直线与圆相切,
则
=
,从而3m2=4k2+4,
把直线方程:y=kx+m代入椭圆方程有(2k2+1)x2+4kmx+2m2-4=0,
设A(x1,y1),B(x2,y2),则△>0,且x1+x2=
,x1x2=
,
•
=x1x2+y1y2=
(3m2-4k2-4)=0.
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a |
则|MF2|=
| b2 |
| a |
| 3b2 |
| a |
又
| b2 |
| a |
| 3b2 |
| a |
∵a2-b2=c2=
| 2 |
∴b2=2,a2=4,
∴
| x2 |
| 4 |
| y2 |
| 2 |
(2)①若直线l的斜率不存在时,易证:
| OA |
| OB |
②若直线l的斜率存在时,设其方程为:y=kx+m,直线与圆相切,
则
| |m| | ||
|
| 2 | ||
|
把直线方程:y=kx+m代入椭圆方程有(2k2+1)x2+4kmx+2m2-4=0,
设A(x1,y1),B(x2,y2),则△>0,且x1+x2=
| -4km |
| 2k2+1 |
| 2m2-4 |
| 2k2+1 |
| OA |
| OB |
| 1 |
| 2k2+1 |
点评:该题考查椭圆的方程、性质,考查直线与椭圆的位置关系,考查方程思想,考查学生运算求解能力.
练习册系列答案
相关题目