题目内容

5.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.

分析 (1)由已知先证明CD⊥平面PAD,可得:CD⊥AF,结合AF⊥PD,可得AF⊥平面PDC;
(2)连接CF,由(1)可知CF是AF在平面PCD内的射影,故∠ACF是AF与平面PCD所成的角,解得答案.

解答 解:(1)∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵正方形ABCD中,CD⊥AD,PA∩AD=A,
∴CD⊥平面PAD,
∴CD⊥AF,
∵PA=AD,FP=FD
∴AF⊥PD
又∵CD∩PD=D
∴AF⊥平面PDC…(6分)
(2)连接CF

由(1)可知CF是AF在平面PCD内的射影
∴∠ACF是AF与平面PCD所成的角
∵AF⊥平面PDC∴AF⊥FC
在△ACF中,$AC=2\sqrt{2},CF=\sqrt{C{D^2}+D{F^2}}=\sqrt{6}$
∴$cos∠ACF=\frac{CF}{AC}=\frac{{\sqrt{3}}}{2}∴∠ACF={30°}$
AF与平面PCD所成的角为30°.…..(12分)

点评 本题考查的知识点是直线与平面所成的角,线面垂直的判定与性质,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网