题目内容
17.分析 过点C作CF⊥DE于F,连结C1F,说明∠C1FC就是二面角C-DE-C1的平面角,在△C1FC中,∠C1CF=90°,求解tan∠C1FC的值即可.
解答
解:过点C作CF⊥DE于F,连结C1F,因为DE⊥C1C,所以DE⊥平面C1CF,所以C1F⊥DE,
所以∠C1FC就是二面角C-DE-C1的平面角,
在△C1FC中,∠C1CF=90°,CF=CDsin45$°=2\sqrt{2}$.
所以tan∠C1FC=$\frac{C{C}_{1}}{CF}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题考查二面角的平面角的求法,考查空间想象能力以及计算能力,转化思想的应用.
练习册系列答案
相关题目
6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,则f(1)+f(2)+f(3)+…+f(2013)=( )
| A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | -2$\sqrt{3}$ | D. | 2$\sqrt{3}$ |