题目内容

某校开设9门课程供学生选修,其中A,B,C3门由于上课时间相同,至多选1门.若学校规定每位学生选修4门,则每位学生不同的选修方案共有(  )
A、15种B、60种
C、150种D、75种
考点:排列、组合的实际应用
专题:概率与统计
分析:由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
解答: 解:由题意知本题需要分类来解,
第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31•C63=60,
第二类,若从其他六门中选4门有C64=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故选D.
点评:本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网