ÌâÄ¿ÄÚÈÝ
10£®ÓÉn£¨n¡Ý2£©¸ö²»Í¬µÄÊý¹¹³ÉµÄÊýÁÐa1£¬a2£¬¡anÖУ¬Èô1¡Üi£¼j¡Ünʱ£¬aj£¼ai£¨¼´ºóÃæµÄÏîajСÓÚÇ°ÃæÏîai£©£¬Ôò³ÆaiÓëaj¹¹³ÉÒ»¸öÄæÐò£¬Ò»¸öÓÐÇîÊýÁеÄÈ«²¿ÄæÐòµÄ×ÜÊý³ÆÎª¸ÃÊýÁеÄÄæÐòÊý£®Èç¶ÔÓÚÊýÁÐ3£¬2£¬1£¬ÓÉÓÚÔÚµÚÒ»Ïî3ºóÃæ±È3СµÄÏîÓÐ2¸ö£¬ÔÚµÚ¶þÏî2ºóÃæ±È2СµÄÏîÓÐ1¸ö£¬ÔÚµÚÈýÏî1ºóÃæ±È1СµÄÏîûÓУ¬Òò´Ë£¬ÊýÁÐ3£¬2£¬1µÄÄæÐòÊýΪ2+1+0=3£»Í¬Àí£¬µÈ±ÈÊýÁÐ$1£¬-\frac{1}{2}£¬\frac{1}{4}£¬-\frac{1}{8}$µÄÄæÐòÊýΪ4£®£¨1£©¼ÆËãÊýÁÐ${a_n}=-2n+19£¨1¡Ün¡Ü100£¬n¡Ê{N^*}£©$µÄÄæÐòÊý£»
£¨2£©¼ÆËãÊýÁÐ${a_n}=\left\{\begin{array}{l}{£¨{\frac{1}{3}}£©^n}£¬nÎªÆæÊý\\-\frac{n}{n+1}£¬nΪżÊý\end{array}\right.$£¨1¡Ün¡Ük£¬n¡ÊN*£©µÄÄæÐòÊý£»
£¨3£©ÒÑÖªÊýÁÐa1£¬a2£¬¡anµÄÄæÐòÊýΪa£¬Çóan£¬an-1£¬¡a1µÄÄæÐòÊý£®
·ÖÎö £¨1£©ÓÉ{an}Ϊµ¥µ÷µÝ¼õÊýÁУ¬¿ÉµÃÄæÐòÊýΪ99+98+¡+1£®
£¨2£©µ±nÎªÆæÊýʱ£¬a1£¾a3£¾¡£¾a2n-1£¾0£®µ±nΪżÊýʱ£º0£¾a2£¾a4£¾¡£¾a2n£®¿ÉµÃÄæÐòÊý£®
£¨3£©ÔÚÊýÁÐa1£¬a2£¬¡anÖУ¬Èôa1ÓëºóÃæn-1¸öÊý¹¹³Ép1¸öÄæÐò¶Ô£¬ÔòÓУ¨n-1£©-p1²»¹¹³ÉÄæÐò¶Ô£¬¿ÉµÃÔÚÊýÁÐan£¬an-1£¬¡a1ÖУ¬ÄæÐòÊýΪ£¨n-1£©-p1+£¨n-2£©-p2+¡+£¨n-n£©-pn£®
½â´ð ½â£º£¨1£©¡ß{an}Ϊµ¥µ÷µÝ¼õÊýÁУ¬¡àÄæÐòÊýΪ$99+98+¡+1=\frac{£¨99+1£©¡Á99}{2}=4950$£®
£¨2£©µ±nÎªÆæÊýʱ£¬a1£¾a3£¾¡£¾a2n-1£¾0£®
µ±nΪżÊýʱ£º
$\begin{array}{l}{a_n}-{a_{n-2}}=-\frac{n}{n+1}+\frac{n-2}{n-1}£¨n¡Ý4£©\\=\frac{-2}{{{n^2}-1}}\\=\frac{-2}{£¨n+1£©£¨n-1£©}£¼0\end{array}$
¡à0£¾a2£¾a4£¾¡£¾a2n£®
µ±kÎªÆæÊýʱ£¬ÄæÐòÊýΪ$£¨k-1£©+£¨k-3£©+¡+2+\frac{k-3}{2}+\frac{k-5}{2}+¡+1=\frac{{3{k^2}-4k+1}}{8}$£»
µ±kΪżÊýʱ£¬ÄæÐòÊýΪ$£¨k-1£©+£¨k-3£©+¡+1+\frac{k-2}{2}+\frac{k-4}{2}+¡+1=\frac{{3{k^2}-2k}}{8}$£®
£¨3£©ÔÚÊýÁÐa1£¬a2£¬¡anÖУ¬Èôa1ÓëºóÃæn-1¸öÊý¹¹³Ép1¸öÄæÐò¶Ô£¬
ÔòÓУ¨n-1£©-p1²»¹¹³ÉÄæÐò¶Ô£¬ËùÒÔÔÚÊýÁÐan£¬an-1£¬¡a1ÖУ¬
ÄæÐòÊýΪ$£¨n-1£©-{p_1}+£¨n-2£©-{p_2}+¡+£¨n-n£©-{p_n}=\frac{n£¨n-1£©}{2}-a$£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢Ð¶¨ÒåÄæÐòÊý£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $[\frac{1}{2}£¬1]$ | B£® | $£¨\frac{1}{2}£¬1]$ | C£® | $£¨\frac{1}{2}£¬{log_3}2]$ | D£® | $[\frac{1}{2}£¬{log_3}2]$ |