题目内容

18.如图1,在等边△ABC中,D,E,F分别为AB,AC,BC的中点.将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF.

(Ⅰ)证明:AF⊥BC;
(Ⅱ)当∠BFC=120°时,求二面角A-DE-F的余弦值;
(Ⅲ)在(Ⅱ)的条件下,在线段BC上是否存在一点N,使得平面ABF⊥平面FDN?若存在,求出$\frac{{|{BN}|}}{{|{BC}|}}$的值;若不存在,说明理由.

分析 (Ⅰ)推导出AF⊥BF,AF⊥FC.由此能证明AF⊥BC.
(II) 以点F为原点,在平面BCF内过点F作FC的垂线作为x轴,FC为y轴,FA为z轴,建立空间直角坐标系.利用向量法能求出二面角A-DE-F的余弦值.
(III)在平面BCF内,过F作FN⊥BF交BC于N,推导出AF⊥FN,从而FN⊥面ABF,进而面ABF⊥面DFN.由此能求出在线段BC上存在一点N,满足面ABF⊥面DFN,且 $\frac{{|{BN}|}}{{|{BC}|}}=\frac{2}{3}$.

解答 (本题满分9分)
证明:(Ⅰ)∵等边△ABC,F为BC的中点,
∴AF⊥BC.
即AF⊥BF,AF⊥FC.
又∵BF∩FC=F,∴AF⊥面BCF.
又∵BC?面BCF,∴AF⊥BC.   …(3分)
解:(II) 如图,以点F为原点,在平面BCF内过点F作FC的垂线作为x轴,FC为y轴,FA为z轴,建立空间直角坐标系.
设FC=2,则有F(0,0,0),$A({0,0,2\sqrt{3}})$,$B({\sqrt{3},-1,0})$,C(0,2,0),
∴$D({\frac{{\sqrt{3}}}{2},-\frac{1}{2},\sqrt{3}})$,$E({0,1,\sqrt{3}})$.
∴$\overrightarrow{FD}=({\frac{{\sqrt{3}}}{2},-\frac{1}{2},\sqrt{3}})$,$\overrightarrow{FE}=({0,1,\sqrt{3}})$,$\overrightarrow{AD}=({\frac{{\sqrt{3}}}{2},-\frac{1}{2},-\sqrt{3}})$,$\overrightarrow{AE}=({0,1,-\sqrt{3}})$.
设平面DEF的法向量为$\overrightarrow{m}$=(x1,y1,z1),
因此$\left\{\begin{array}{l}{\overrightarrow{FD}•\overrightarrow{m}=0}\\{\overrightarrow{FE}•\overrightarrow{m}=0}\end{array}\right.$,即$\left\{\begin{array}{l}\frac{{\sqrt{3}}}{2}{x_1}-\frac{1}{2}{y_1}+\sqrt{3}{z_1}=0\\{y_1}+\sqrt{3}{z_1}=0.\end{array}\right.$,
令z1=1,则$\overrightarrow{m}$=(-3,-$\sqrt{3}$,1).
设平面ADE的法向量为$\overrightarrow{n}$=(x2,y2,z2),
因此有$\left\{\begin{array}{l}{\overrightarrow{AD}•\overrightarrow{n}=0}\\{\overrightarrow{AE}•\overrightarrow{n}=0}\end{array}\right.$,即$\left\{\begin{array}{l}\frac{{\sqrt{3}}}{2}{x_2}-\frac{1}{2}{y_2}-\sqrt{3}{z_2}=0\\{y_2}-\sqrt{3}{z_2}=0.\end{array}\right.$,
令z2=1,则$\overrightarrow{n}$=(3,$\sqrt{3}$,1).
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-11}{\sqrt{13}•\sqrt{13}}$=-$\frac{11}{13}$.
∴二面角A-DE-F的余弦值为$-\frac{11}{13}$.         …(6分)
(III)在线段BC上存在一点N,满足面ABF⊥面DFN,且 $\frac{{|{BN}|}}{{|{BC}|}}=\frac{2}{3}$.
证明如下:
在平面BCF内,过F作FN⊥BF交BC于N,∵AF⊥面BCF,FN?面BCF,∴AF⊥FN.
又∵FN⊥BF,AF∩BF=F,∴FN⊥面ABF.
又∵FN?面DFN,∴面ABF⊥面DFN.
设FN=a,∵∠BFC=120°,BF=FC,∴∠FBC=∠FCB=30°.
又∵FN⊥BF,∴BN=2a.∵∠NFC=∠FCN=30°,
∴FN=NC=a.∴BC=3a.∴$\frac{BN}{BC}=\frac{2}{3}$.         …(9分)

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点的位置的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网