题目内容
数列{an}满足a1=
,an+1=
(n∈N*)
(Ⅰ)求证:{
}为等差数列,并求出{an}的通项公式;
(Ⅱ)设bn=
-1,数列{bn}的前n项和为Bn,对任意n≥2都有B3n-Bn>
成立,求整数m的最大值.
| 1 |
| 2 |
| 1 |
| 2-an |
(Ⅰ)求证:{
| 1 |
| an-1 |
(Ⅱ)设bn=
| 1 |
| an |
| m |
| 20 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出
=
=
=-1+
,由此能证明{
}为等差数列,并能求出{an}的通项公式.
(2)bn=
-1=
-1=
,令Cn=B3n-Bn=
+
+…+
,从而得到{Cn}为单调递增数列,由此能求出整数m的最大值.
| 1 |
| an+1-1 |
| 1 | ||
|
| 2-an |
| an-1 |
| 1 |
| an-1 |
| 1 |
| an-1 |
(2)bn=
| 1 |
| an |
| n+1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
解答:
解:(Ⅰ)∵数列{an}满足a1=
,an+1=
(n∈N*),
∴
=
=
=-1+
,
∴
-
=-1,
∵
=
=-2,
∴{
}是首项为-2,公差为-1的等差数列,
∴
=-2+(n-1)×(-1)=-(n+1),
∴an=
.
(2)bn=
-1=
-1=
,
令Cn=B3n-Bn=
+
+…+
,
∴Cn+1-Cn=
+
+…+
-
-…-
=-
+
+
+
=
-
+
>
-
=0,
∴Cn+1-Cn>0,
∴{Cn}为单调递增数列,
∴(B3n-Bn)min=B6-B2=
+
+
+
=
,
∴m<19,
又m∈N*,
∴m的最大值为18.
| 1 |
| 2 |
| 1 |
| 2-an |
∴
| 1 |
| an+1-1 |
| 1 | ||
|
| 2-an |
| an-1 |
| 1 |
| an-1 |
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
∵
| 1 |
| a1-1 |
| 1 | ||
|
∴{
| 1 |
| an-1 |
∴
| 1 |
| an-1 |
∴an=
| n |
| n+1 |
(2)bn=
| 1 |
| an |
| n+1 |
| n |
| 1 |
| n |
令Cn=B3n-Bn=
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 3n |
∴Cn+1-Cn=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3(n+1) |
| 1 |
| n+1 |
| 1 |
| 3n |
=-
| 1 |
| n+1 |
| 1 |
| 3n+2 |
| 1 |
| 3n+3 |
| 1 |
| 3n+1 |
=
| 1 |
| 3n+2 |
| 2 |
| 3n+3 |
| 1 |
| 3n+1 |
| 2 |
| 3n+3 |
| 2 |
| 3n+3 |
∴Cn+1-Cn>0,
∴{Cn}为单调递增数列,
∴(B3n-Bn)min=B6-B2=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 19 |
| 20 |
∴m<19,
又m∈N*,
∴m的最大值为18.
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查整数的最大值的求法,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目