ÌâÄ¿ÄÚÈÝ
ÒÑ֪˫ÇúÏßCµÄÖÐÐÄÔÚÔµãÇÒ¾¹ýµãD£¨2£¬0£©£¬
=£¨2£¬1£©£¬
=£¨2£¬-1£©·Ö±ðÊÇÁ½Ìõ½¥½üÏߵķ½ÏòÏòÁ¿£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÍÖÔ²
+y2=1µÄ×ó¶¥µãΪA£¬¾¹ýB£¨-
£¬0£©µÄÖ±Ïß?ÓëÍÖÔ²½»ÓÚM£¬NÁ½µã£¬ÊÔÅжÏ
•
ÊÇ·ñΪ¶¨Öµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©ÊÇ·ñÒ²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¿ÈôÊÇ£¬ÇëÑ¡ÔñÒ»¸öÇúÏßд³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
| m1 |
| m2 |
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÍÖÔ²
| x2 |
| 4 |
| 6 |
| 5 |
| AM |
| AN |
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©ÊÇ·ñÒ²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¿ÈôÊÇ£¬ÇëÑ¡ÔñÒ»¸öÇúÏßд³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,Àà±ÈÍÆÀí,Ë«ÇúÏߵıê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©Çó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£¬Çó³öa£¬b£¬¼´¿ÉµÃµ½Ë«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÅжÏ
•
ÊÇ·ñΪ¶¨Öµ£¬Í¨¹ýÖ±Ïß?µÄбÂʲ»´æÔÚʱ£¬Ö±½ÓÅжÏÇó½â£®Ö±Ïß?µÄбÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³ÌÓëË«ÇúÏß·½³ÌÁªÁ¢£¬Í¨¹ýΤ´ï¶¨ÀíÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ý»¯¼òÕûÀí¼´¿É£®
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¬Ð´³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
£¨2£©ÅжÏ
| AM |
| AN |
£¨3£©Ë«ÇúÏßC»òÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ£¨2£©µÄ½áÂÛ£¬Ð´³öÀàËÆ½áÂÛ£¨²»ÒªÇóÊéдÇó½â»òÖ¤Ã÷¹ý³Ì£©£®
½â´ð£º
½â£º£¨1£©Á½Ìõ½¥½üÏߵķ½³ÌΪy=¡À
x£¬ÒÀÌâÒâa=2£¬ËùÒÔb=1£®¹ÊË«ÇúÏßCµÄ·½³ÌΪ£º
-y2=1£®¡3¡ä
£¨2£©
•
Ϊ¶¨Öµ0£¬ÀíÓÉÈçÏ£ºµ±Ö±Ïß?µÄбÂʲ»´æÔÚʱ£¬?µÄ·½³ÌΪx=-
£¬ÇóµÃM(-
£¬
)£¬N(-
£¬-
)£¬´Ëʱ
•
=(
£¬
)•(
£¬-
)=0£»¡4¡ä
µ±Ö±Ïß?µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß?µÄ·½³ÌΪ£ºy=k(x+
)£¬
ÁªÁ¢
µÃ£¨100k2+25£©x2+240k2x+144k2-100=0£¬
ÏÔÈ»¡÷£¾0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò
£¬¡6¡ä£¬
y1•y2=k2(x1+
)(x2+
)=k2[x1•x2+
(x1+x2)+
]=-
£¬
ËùÒÔ
•
=(x1+2£¬y1)•(x2+2£¬y2)=(x1+2)•(x2+2)+y1•y2=x1•x2+2(x1+x2)+4+y1•y2¡9¡ä
=
+2(-
)+4+
=0£¬
×ÛÉÏËùÊö£¬
•
Ϊ¶¨Öµ0£®¡10¡ä
£¨3£©Ë«ÇúÏßC£º
-y2=1µÄ×ó¶¥µãΪA£¬¾¹ýB(-
£¬0)µÄÖ±Ïß?ÓëË«ÇúÏßC½»ÓÚM£¬NÁ½µã£¬
Ôò
•
Ϊ¶¨Öµ0£®
˵Ã÷£º¢Ù±ØÐëÖ¸³öBµã×ø±ê£¬µ«¿ÉÒÔ²»Ëµ¾ßÌ嶨ֵ£®
¢Ú¶ÔË«ÇúÏßC¶øÑÔ£¬ÓëÓÒ¶¥µãÏà¹ØµÄµãΪB(
£¬0)£®
¢ÛÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ½áÂÛ£ºÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ¶¥µãΪO£¬¾¹ýµãB£¨2p£¬0£©µÄÖ±Ïß?ÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚM£¬NÁ½µã£¬Ôò
•
Ϊ¶¨Öµ0£®¡13¡ä
| 1 |
| 2 |
| x2 |
| 4 |
£¨2£©
| AM |
| AN |
| 6 |
| 5 |
| 6 |
| 5 |
| 4 |
| 5 |
| 6 |
| 5 |
| 4 |
| 5 |
| AM |
| AN |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
µ±Ö±Ïß?µÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß?µÄ·½³ÌΪ£ºy=k(x+
| 6 |
| 5 |
ÁªÁ¢
|
ÏÔÈ»¡÷£¾0£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò
|
y1•y2=k2(x1+
| 6 |
| 5 |
| 6 |
| 5 |
| 6 |
| 5 |
| 36 |
| 25 |
| 64k2 |
| 100k2+25 |
ËùÒÔ
| AM |
| AN |
=
| 144k2-100 |
| 100k2+25 |
| 240k2 |
| 100k2+25 |
| -64k2 |
| 100k2+25 |
×ÛÉÏËùÊö£¬
| AM |
| AN |
£¨3£©Ë«ÇúÏßC£º
| x2 |
| 4 |
| 10 |
| 3 |
Ôò
| AM |
| AN |
˵Ã÷£º¢Ù±ØÐëÖ¸³öBµã×ø±ê£¬µ«¿ÉÒÔ²»Ëµ¾ßÌ嶨ֵ£®
¢Ú¶ÔË«ÇúÏßC¶øÑÔ£¬ÓëÓÒ¶¥µãÏà¹ØµÄµãΪB(
| 10 |
| 3 |
¢ÛÅ×ÎïÏßy2=2px£¨p£¾0£©Ò²ÓÐÀàËÆ½áÂÛ£ºÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ¶¥µãΪO£¬¾¹ýµãB£¨2p£¬0£©µÄÖ±Ïß?ÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚM£¬NÁ½µã£¬Ôò
| AM |
| AN |
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÓ¦Óã¬Ë«ÇúÏß·½³ÌµÄÇ󷨣¬Àà±ÈÍÆÀíµÄÓ¦Óã¬×ÛºÏÐԱȽÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈënµÄֵΪ4£¬ÔòÊä³öSµÄֵΪ£¨¡¡¡¡£©

| A¡¢5 | B¡¢6 | C¡¢7 | D¡¢8 |