题目内容
17.物体A的运动速度v与时间t之间的关系为v=2t-1(v的单位是m/s,t的单位是s),物体B的运动速度v与时间t之间的关系为v=1+8t,两个物体在相距为405m的同一直线上同时相向运动.则它们相遇时,A物体的运动路程为72m.分析 由定积分求出两物体相遇时物体A运动的距离和物体B运动的距离,由距离相等列式求出t,代入距离函数求得答案.
解答 解:两物体相遇时A运动的距离为${∫}_{0}^{t}$(2t-1)dt=(t2-t)|${\;}_{0}^{t}$=t2-t,
B运动的距离为${∫}_{0}^{t}$(1+8t)dt=t+4t2.
由t2-t+4t2+t=405,得t=9,(t=-9舍去).
∴两物体相遇时A运动的距离为92-9=72.
故答案为:72m
点评 本题考查了定积分的应用;关键是明确对速度的积分是物体的运动路程的意义,属于基础题.
练习册系列答案
相关题目
10.华为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
男性用户:
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列
联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
附:
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根据评分的不同,运动分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80
分的用户中任意抽取2名用户,求2名用户中评分小于90分概率.
女性用户:
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
| P(K2≧k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
(2)根据评分的不同,运动分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80
分的用户中任意抽取2名用户,求2名用户中评分小于90分概率.
11.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为$\frac{π}{8}$,则下列命题是真命题的是( )
| A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | ?q |
5.过抛物线C:y2=4x焦点F的直线交抛物线C于A、B两点,|AB|=8,过线段AB的中点作y轴的垂线,垂足为P,则|$\overrightarrow{PA}$|2+|$\overrightarrow{PB}$|2=( )
| A. | 36 | B. | 40 | C. | 50 | D. | 52 |
12.在斜二测画法,圆的直观图是椭圆,则这个椭圆的离心率为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{\sqrt{42}}}{7}$ |
9.下列各组角中,终边相同的角是( )
| A. | $\frac{kπ}{2}$与 kπ+$\frac{π}{2}$(k∈Z) | B. | kπ±$\frac{π}{3}$与 $\frac{kπ}{3}$(k∈Z) | ||
| C. | (2k+1)π 与 (4k±1)π (k∈Z) | D. | kπ+$\frac{π}{6}$与 2kπ±$\frac{π}{6}$(k∈Z) |
6.方程(1+4k)x-(2-3k)y+2-14k=0所确定的直线必经过点( )
| A. | (2,2) | B. | (-2,2) | C. | (-6,2) | D. | (3,-6) |
7.以下四个命题中是真命题的是( )
| A. | 对分类变量x与y的随机变量k2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大 | |
| B. | 两个随机变量的线性相关性越强,相关系数的绝对值越接近于0 | |
| C. | 若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2 | |
| D. | 在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好. |