题目内容
10.华为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户:
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
| P(K2≧k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
(2)根据评分的不同,运动分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80
分的用户中任意抽取2名用户,求2名用户中评分小于90分概率.
分析 (1)利用数据直接填写联列表即可,求出X2,即可回答是否有95%的把握认为性别和对手机的“认可”有关;
(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为A,B,C,D,评分不小于90分的人数为2,求出相应事件的个数,即可求2名用户中评分小于90分概率.
解答 解:(1)2×2列联表如下图:
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
(2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为A,B,C,D,评分不小于90分的人数为2,记为a,b,从6人人任取2人,
基本事件空间为Ω={(AB),(AC),(AD),(Aa),(Ab),(BC),(BD),(Ba),(Bb),(CD),(Ca),(Cb),(Da),(Db),(ab)},符合条件的共有9个元素.
其中把“两名用户评分都小于9(0分)”记作M,
则M={(AB),(AC),(AD),(BC),(BD),(CD)},共有6个元素.
所以两名用户评分都小于90分的概率为$\frac{3}{5}$.…(12分)
点评 本题考查独立性检验,考查概率的计算,属中档题.
练习册系列答案
相关题目
18.设α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且$\frac{sinα}{cosα}$=$\frac{cosβ}{1-sinβ}$,则( )
| A. | 2α+β=$\frac{π}{2}$ | B. | 2α-β=$\frac{π}{2}$ | C. | α+2β=$\frac{π}{2}$ | D. | α-2β=$\frac{π}{2}$ |
5.设数列{an}满足a1=a,an+1=$\frac{a_n^2-2}{{{a_n}+1}}$(n∈N),若数列{an}是常数列,则a=( )
| A. | -2 | B. | -1 | C. | 0 | D. | (-1)n |
2.已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(-$\sqrt{3}$,2),则tan(α-$\frac{π}{6}$)的值为( )
| A. | -3$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{5}$ | C. | -$\frac{5\sqrt{3}}{3}$ | D. | -$\frac{3\sqrt{3}}{5}$ |
19.已知p:?x>0,ex-ax<1成立,q:函数f(x)=-(a-1)x是减函数,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |