题目内容
12.在斜二测画法,圆的直观图是椭圆,则这个椭圆的离心率为( )| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{\sqrt{42}}}{7}$ |
分析 结合斜二侧画法的原理,可得到椭圆长轴与短轴的关系,最后根据椭圆的有关公式,即可求得该椭圆的离心率.
解答 解:设圆的半径为$2\sqrt{2}$,圆的方程可设为$\frac{x^2}{8}+\frac{y^2}{8}=1$,
设直线y=x与椭圆在第一象限的交点为A,
由斜二测画法的性质可知$|{OA}|=\sqrt{2}$,
从而A的坐标为(1,1),故$\frac{1}{8}+\frac{1}{b^2}=1⇒{b^2}=\frac{8}{7}$,
离心率$e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{1}{7}}=\frac{{\sqrt{42}}}{7}$.
故选D.
点评 本题要我们求斜二侧画法下,圆的直观图得到椭圆的离心率,着重考查了椭圆的简单几何性质和平面直观图的知识,属于基础题.
练习册系列答案
相关题目
5.设数列{an}满足a1=a,an+1=$\frac{a_n^2-2}{{{a_n}+1}}$(n∈N),若数列{an}是常数列,则a=( )
| A. | -2 | B. | -1 | C. | 0 | D. | (-1)n |
6.已知复数z的实部为-1,虚部为2,则$\frac{5i}{\overline z}$对应的点位于( )
| A. | 第四象限 | B. | 第一象限 | C. | 第三象限 | D. | 第二象限 |
3.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.
甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲流水线样本的频数分布表
| 质量指标值 | 频数 |
| (190,195] | 9 |
| (195,200] | 10 |
| (200,205] | 17 |
| (205,210] | 8 |
| (210,215] | 6 |
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
| 甲生产线 | 乙生产线 | 合计 | |
| 合格品 | |||
| 不合格品 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.若函数y=|x-2|-2的定义域为集合M={x∈R|-2≤x≤2},值域为集合N,则( )
| A. | M=N | B. | M?N | C. | N?M | D. | M∩N=∅ |
1.若数据x1,x2,…,xn的平均值为$\overline x$,方差为S2,则3x1+5,3x2+5,…,3xn+5的平均值和方差分别为( )
| A. | $\overline{x}$和S2 | B. | 3$\overline{x}$+5和9S2 | C. | 3$\overline{x}$+5和S2 | D. | $\overline{x}$和9S2 |
2.在△ABC中,三边a,b,c与面积S的关系式为S=$\frac{{\sqrt{3}}}{12}({b^2}+{c^2}-{a^2})$,则角A等于( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |