题目内容
11.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为$\frac{π}{8}$,则下列命题是真命题的是( )| A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | ?q |
分析 分别求出相应的概率,确定p,q的真假,即可得出结论.
解答 解:从有2件正品和2件次品的产品中任选2件得都是正品的概率为$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{6}$,即p是假命题;
如图正方形的边长为4:![]()
图中白色区域是以AB为直径的半圆
当P落在半圆内时,∠APB>90°;
当P落在半圆上时,∠APB=90°;
当P落在半圆外时,∠APB<90°;
故使∠AMB>90°的概率P=$\frac{\frac{1}{2}π•{2}^{2}}{16}=\frac{π}{8}$.
即q为真命题,
∴(?p)∧q为真命题,
故选:B.
点评 本题考查概率的计算,考查命题真假的判断,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
2.已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(-$\sqrt{3}$,2),则tan(α-$\frac{π}{6}$)的值为( )
| A. | -3$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{5}$ | C. | -$\frac{5\sqrt{3}}{3}$ | D. | -$\frac{3\sqrt{3}}{5}$ |
19.已知p:?x>0,ex-ax<1成立,q:函数f(x)=-(a-1)x是减函数,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
6.已知复数z的实部为-1,虚部为2,则$\frac{5i}{\overline z}$对应的点位于( )
| A. | 第四象限 | B. | 第一象限 | C. | 第三象限 | D. | 第二象限 |
16.已知双曲线C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于( )
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
3.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.
甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲流水线样本的频数分布表
| 质量指标值 | 频数 |
| (190,195] | 9 |
| (195,200] | 10 |
| (200,205] | 17 |
| (205,210] | 8 |
| (210,215] | 6 |
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
| 甲生产线 | 乙生产线 | 合计 | |
| 合格品 | |||
| 不合格品 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |