题目内容
9.下列各组角中,终边相同的角是( )| A. | $\frac{kπ}{2}$与 kπ+$\frac{π}{2}$(k∈Z) | B. | kπ±$\frac{π}{3}$与 $\frac{kπ}{3}$(k∈Z) | ||
| C. | (2k+1)π 与 (4k±1)π (k∈Z) | D. | kπ+$\frac{π}{6}$与 2kπ±$\frac{π}{6}$(k∈Z) |
分析 根据两个表示角的含义,即可判断终边是否相同.
解答 解:对于A:$\frac{kπ}{2}$表示终边在x轴或y轴上的角,kπ+$\frac{π}{2}$表示终边在y轴上的角,终边不相同,
对于B:kπ±$\frac{π}{3}$表示终边在y=±$\sqrt{3}$上的角,$\frac{kπ}{3}$,表示轴线角和终边在y=±$\sqrt{3}$上的角,终边不相同,
对于C:(2k+1)π,(4k±1)π都表示终边在z轴的负半轴上的角,故终边相同,
对于D:kπ+$\frac{π}{6}$表示终边在y=±$\frac{\sqrt{3}}{3}$上的角,2kπ±$\frac{π}{6}$表示轴线角和终边在y=±$\frac{\sqrt{3}}{3}$上的角,且属于第一,四象限,终边不相同,
故选:C
点评 本题考查终边相同的角的应用,考查计算能力.
练习册系列答案
相关题目
2.已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(-$\sqrt{3}$,2),则tan(α-$\frac{π}{6}$)的值为( )
| A. | -3$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{5}$ | C. | -$\frac{5\sqrt{3}}{3}$ | D. | -$\frac{3\sqrt{3}}{5}$ |
3.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.
甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲流水线样本的频数分布表
| 质量指标值 | 频数 |
| (190,195] | 9 |
| (195,200] | 10 |
| (200,205] | 17 |
| (205,210] | 8 |
| (210,215] | 6 |
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
| 甲生产线 | 乙生产线 | 合计 | |
| 合格品 | |||
| 不合格品 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.
如图,一块长宽分别为30M、40M的矩形草地,其中间及四角是半径为10M的圆和扇形花圃,随意向草地浇水,则浇在花圃中的概率为( )
| A. | $\frac{π}{12}$ | B. | $1-\frac{π}{6}$ | C. | $\frac{π}{6}$ | D. | $1-\frac{π}{12}$ |
1.若数据x1,x2,…,xn的平均值为$\overline x$,方差为S2,则3x1+5,3x2+5,…,3xn+5的平均值和方差分别为( )
| A. | $\overline{x}$和S2 | B. | 3$\overline{x}$+5和9S2 | C. | 3$\overline{x}$+5和S2 | D. | $\overline{x}$和9S2 |