题目内容

16.将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

分析 由题意可得:设裁去四个全等的等腰三角形的底边边长为x,则图(2)中的底面正方形的边长=$\frac{12-x}{2}×\sqrt{2}$,又图(3)中的等边三角形的边长=$6\sqrt{2}$-$\frac{12-x}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}(12+x)}{4}$.利用$\frac{\sqrt{2}}{2}$(12-x)=$\frac{\sqrt{2}(12+x)}{4}$.解得x,再利用体积计算公式即可得出.

解答 解:由题意可得:设裁去四个全等的等腰三角形的底边边长为x,则图(2)中的底面正方形的边长=$\frac{12-x}{2}×\sqrt{2}$,又图(3)中的等边三角形的边长=$6\sqrt{2}$-$\frac{12-x}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}(12+x)}{4}$.
∴$\frac{\sqrt{2}}{2}$(12-x)=$\frac{\sqrt{2}(12+x)}{4}$.
解得x=4.
∴正四棱锥的体积=$\frac{1}{3}×(4\sqrt{2})^{2}$×$\frac{\sqrt{3}}{2}×4\sqrt{2}$=$\frac{64\sqrt{6}}{3}$.
故选:B.

点评 本题考查了空间位置关系、三视图、正四棱锥、等边三角形的性质、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网