题目内容

12.若将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)的图象,则函数g(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性函数g(x)的单调递增区间.

解答 解:将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)=$\frac{1}{2}$sin[2(x+$\frac{π}{3}$)+$\frac{π}{3}$]=-$\frac{1}{2}$sin2x的图象,
故本题即求y=sin2x的减区间,令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
故函数g(x)的单调递增区间为[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网