题目内容
12.若将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)的图象,则函数g(x)的单调递增区间为( )| A. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) | B. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z) | ||
| C. | [kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z) | D. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) |
分析 利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性函数g(x)的单调递增区间.
解答 解:将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)=$\frac{1}{2}$sin[2(x+$\frac{π}{3}$)+$\frac{π}{3}$]=-$\frac{1}{2}$sin2x的图象,
故本题即求y=sin2x的减区间,令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
故函数g(x)的单调递增区间为[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.
练习册系列答案
相关题目
4.函数y=$\frac{1}{{x}^{2}-4x+3}$(x≠1且x≠3)的值域为( )
| A. | [$\frac{1}{3}$,+∞) | B. | [-1,0)∪(0,+∞) | C. | [-1,+∞) | D. | (-∞,-1]∪(0,+∞) |
6.若一条直线和一个平面内无数条直线垂直,则直线和平面的位置关系是( )
| A. | 垂直 | B. | 平行 | ||
| C. | 相交 | D. | 平行或相交或垂直或在平面内 |