题目内容
20.在平面直角坐标系xOy中,F1,F2分别为椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦点,若点P在椭圆上,且PF1=2,则PF2的值是4.分析 椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$焦点在x轴上,a=3,椭圆的定义可知:丨PF1丨+丨PF2丨=2a=6,则丨PF2丨=4.
解答 解:由题意可知:椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$焦点在x轴上,a=3,b=2,c=$\sqrt{5}$,
由椭圆的定义可知:丨PF1丨+丨PF2丨=2a=6,
由丨PF1丨=2,则丨PF2丨=4,
∴丨PF2丨的值为4,
故答案为:4.
点评 本题考查椭圆的定义,考查椭圆方程的应用,属于基础题.
练习册系列答案
相关题目
12.若将函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)图象上的每一个点都向左平移$\frac{π}{3}$个单位,得到g(x)的图象,则函数g(x)的单调递增区间为( )
| A. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) | B. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z) | ||
| C. | [kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z) | D. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) |