ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ·½³ÌΪsin¦È-$\sqrt{3}$¦Ñcos2¦È=0£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÇúÏßC½»µãµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨£¬ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»£¨2£©½«Ö±Ïß·½³Ì´úÈëÇúÏßCµÄ·½³ÌÇó³ötµÄÖµ£¬´Ó¶øÇó³ö½»µã×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©¡ßsin¦È-$\sqrt{3}$¦Ñcos2¦È=0£¬¡à¦Ñsin¦È-$\sqrt{3}$¦Ñ2cos2¦È=0£¬
¼´y-$\sqrt{3}$x2=0£»
£¨2£©½« $\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$£¬´úÈëy-$\sqrt{3}$x2=0£¬
µÃ£¬$\sqrt{3}$+$\sqrt{3}$t-$\sqrt{3}$£¨1+$\frac{1}{2}$t£©2=0£¬¼´t=0£¬
´Ó¶ø£¬½»µã×ø±êΪ£¨1£¬$\sqrt{3}$£©£®
µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬱Ƚϻù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÒÑÖªÁ½ÌõÖ±Ïßl1£ºy=3£¬l2£ºy=$\frac{2}{m-1}$£¨2¡Üm¡Ü6£©£¬l1Ó뺯Êýy=|log2x|µÄͼÏó´Ó×óµ½ÓÒ½»ÓÚA£¬BÁ½µã£¬l2Ó뺯Êýy=|log2x|µÄͼÏó´Ó×óµ½ÓÒ½»ÓÚC£¬DÁ½µã£¬Èôa=|$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$|£¬b=|$\frac{\overrightarrow{BD}•\overrightarrow{CD}}{|\overrightarrow{CD}|}$|£¬µ±m±ä»¯Ê±£¬$\frac{b}{a}$µÄ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨2${\;}^{\frac{2}{5}}$£¬4£© | B£® | [2${\;}^{\frac{2}{5}}$£¬4] | C£® | [2${\;}^{\frac{17}{5}}$£¬32] | D£® | £¨2${\;}^{\frac{17}{5}}$£¬32£© |
17£®ÒÑÖª·½³Ìa-x2=-2lnxÔÚÇø¼ä[$\frac{1}{e}$£¬e]ÉÏÓн⣨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | [1£¬$\frac{1}{{e}^{2}}$+2] | B£® | [1£¬e2-2] | C£® | [$\frac{1}{{e}^{2}}$+2£¬e2-2] | D£® | [e2-2£¬+¡Þ£© |
4£®ÓÉ1£¬2£¬3£¬4£¬5£¬6£¬Áù¸öÊý×Ö×é³ÉÒ»¸öÎÞÖØ¸´Êý×ÖµÄÁùλÊý£¬ÔòÓÐÇÒÖ»ÓÐ2¸öżÊýÏàÁڵĸÅÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{3}{10}$ |