ÌâÄ¿ÄÚÈÝ

12£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ·½³ÌΪsin¦È-$\sqrt{3}$¦Ñcos2¦È=0£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÇúÏßC½»µãµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨£¬ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»£¨2£©½«Ö±Ïß·½³Ì´úÈëÇúÏßCµÄ·½³ÌÇó³ötµÄÖµ£¬´Ó¶øÇó³ö½»µã×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©¡ßsin¦È-$\sqrt{3}$¦Ñcos2¦È=0£¬¡à¦Ñsin¦È-$\sqrt{3}$¦Ñ2cos2¦È=0£¬
¼´y-$\sqrt{3}$x2=0£»
£¨2£©½« $\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$£¬´úÈëy-$\sqrt{3}$x2=0£¬
µÃ£¬$\sqrt{3}$+$\sqrt{3}$t-$\sqrt{3}$£¨1+$\frac{1}{2}$t£©2=0£¬¼´t=0£¬
´Ó¶ø£¬½»µã×ø±êΪ£¨1£¬$\sqrt{3}$£©£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬱Ƚϻù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø