题目内容

已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:由A,B,C,D四点不共面,一定能得到AC,BD不相交;而由AC和BD不相交便知AC和BD平行,所以并不一定得到A,B,C,D四点不共面,所以最后得到命题甲是命题乙的充分不必要条件.
解答: 解:(1)若A,B,C,D四点不共面;
∴AC和BD不相交;
若AC和BD相交,则能得到A,B,C,D四点共面,所以AC和BD不相交;
∴命题甲是乙的充分条件;
(2)若AC和BD不相交,则AC和BD可以平行;
∴A,B,C,D四点共面;
即得不到A,B,C,D四点不共面;
∴命题甲不是命题乙的必要条件;
∴命题甲是乙的充分不必要条件.
故选A.
点评:考查相交直线和平行直线可以确定一个平面,以及充分条件、必要条件、充分不必要条件的概念.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网