题目内容

15.在极坐标系中,过点A(4,-$\frac{π}{2}$)引圆ρ=4sinθ的一条切线,则切线长为4$\sqrt{2}$.

分析 把极坐标转化为直角坐标,利用ρ2=x2+y2,ρsinθ=y,极坐标方程转化为直角坐标方程,作出图形,利用勾股定理求出切线长.

解答 解:在极坐标系中,过点A(4,-$\frac{π}{2}$),
在直角坐标系下,A(0,-4),
圆ρ=4sinθ化为x2+y2-4y=0,
如图:圆心(0,2),半径:2
切线长为:$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.

点评 本题考查切线长的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网