题目内容

16.在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:
空气质量指数t(0,50](50,100](100,150](150,200](200,300](300,+∞)
质量等级轻微污染轻度污染中度污染严重污染
天数K52322251510
(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=$\left\{\begin{array}{l}t,t≤100\\ 2t-100,100<t≤300\end{array}$,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线$\hat y=a+blnt$,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且$\sum_{i=1}^{10}{ln{t_i}}=70,\sum_{i=1}^{10}{y_i}=6000,\sum_{i=1}^{10}{{y_i}ln{t_i}}$=42500,${\sum_{i=1}^{10}{({ln{t_i}})}^2}$=500,求拟合曲线方程.
(附:线性回归方程$\widehat{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-{n}_{x}^{-}{•}_{y}^{-}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-{{n}_{x}^{-}}^{2}}$,a=$\widehat{y}$-b$\widehat{x}$)

分析 (1)令y>200解出t的取值范围,根据频数分布表计算此范围内的频率,则此频率近似等于所求的概率;
(2)令x=lnt,利用回归系数公式求出y关于x的回归方程,再得出y关于t的拟合曲线.

解答 解:(1)令y>200得2t-100>200,解得t>150,
∴当t>150时,病人数超过200人.
由频数分布表可知100天内空气指数t>150的天数为25+15+10=50.
∴病人数超过200人的概率P=$\frac{50}{100}$=$\frac{1}{2}$.
(2)令x=lnt,则y与x线性相关,$\overline{x}$=7,$\overline{y}$=600,
∴b=$\frac{42500-10×7×600}{500-10×49}$=50,a=600-50×7=250.
∴拟合曲线方程为y=50x+250=50lnt+250.

点评 本题考查了用样本的频率估计概率,可化为线性相关的回归方程的求解,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网