题目内容

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面为正方形,侧面PAD与底面ABCD垂直,M为底面所在平面内的一个动点,若动点M到点C的距离等于点M到面PAD的距离,则动点M的轨迹为(  )
A、椭圆B、抛物线
C、双曲线D、直线
考点:平面与平面垂直的性质
专题:空间位置关系与距离
分析:根据面面垂直的性质推断出即点M到直线AD的距离,即为点M到平面PAD的距离,进而根据抛物线的定义推断出点M的轨迹为抛物线.
解答: 解:∵侧面PAD与底面ABCD垂直,且AD为二面的交线,
∴点M向AD作垂线,垂线一定垂直于平面PAD,
即点M到直线AD的距离,即为点M到平面PAD的距离,
∴动点M到点C的距离等于点M直线的距离,
根据抛物线的定义可知,M点的轨迹为抛物线.
故选B.
点评:本题主要考查了平面与平面垂直的性质.在平面与平面垂直的问题上,要特别注意两面的交线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网