题目内容
已知数列{an},其前n项和为Sn,若a2=4,2Sn=an(n+1).
(Ⅰ)求a1、a3;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设Tn=
+
+…+
,求证:Tn<
.
(Ⅰ)求a1、a3;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设Tn=
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 |
| 8 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)依题意得2a1+2a2=a2(2+1),整理得2a1=a2,2(a1+a2+a3)=4a3,由此能求出a1、a3.
(Ⅱ)由已知得2an=2(Sn-Sn-1)=(n+1)an-nan-1,从而
=
,从而求出an=2n.
(III)由
=
=
<
=
(
-
),利用裂项求和法能证明Tn<
.
(Ⅱ)由已知得2an=2(Sn-Sn-1)=(n+1)an-nan-1,从而
| an |
| an-1 |
| n |
| n-1 |
(III)由
| 1 |
| an2+an+12 |
| 1 |
| 4n2+4(n+1)2 |
| 1 |
| 4(2n2+2n+1) |
| 1 |
| 8n(n+1) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 8 |
解答:
(Ⅰ)解:依题意得2a1+2a2=a2(2+1),整理得2a1=a2,
∵a2=4,∴a1=2,
又2(a1+a2+a3)=4a3,所以2a3=2a1+2a2,a3=6.…(3分)
(Ⅱ)解:∵2Sn=an•(n+1),
∴n≥2,2Sn-1=an-1•n,…(5分)
∴2an=2(Sn-Sn-1)=(n+1)an-nan-1,
∴
=
.…(7分)
∴an=
×
×…×
=
×
×…×
×2=2n,
∴an=2n.…(9分)
(III)证明:∵
=
=
<
=
(
-
).…(11分)
∴Tn=
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)<
,
∴Tn<
.…(14分)
∵a2=4,∴a1=2,
又2(a1+a2+a3)=4a3,所以2a3=2a1+2a2,a3=6.…(3分)
(Ⅱ)解:∵2Sn=an•(n+1),
∴n≥2,2Sn-1=an-1•n,…(5分)
∴2an=2(Sn-Sn-1)=(n+1)an-nan-1,
∴
| an |
| an-1 |
| n |
| n-1 |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
∴an=2n.…(9分)
(III)证明:∵
| 1 |
| an2+an+12 |
| 1 |
| 4n2+4(n+1)2 |
=
| 1 |
| 4(2n2+2n+1) |
<
| 1 |
| 8n(n+1) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 8 |
| 1 |
| n+1 |
| 1 |
| 8 |
∴Tn<
| 1 |
| 8 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目