题目内容
1.设F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O为坐标原点,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,则该双曲线的离心率为( )| A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\frac{{\sqrt{10}}}{2}$ | D. | $\frac{5}{2}$ |
分析 取PF2的中点A,利用$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,可得$\overrightarrow{OA}$⊥$\overrightarrow{{F}_{2}P}$,从而可得PF1⊥PF2,利用双曲线的定义及勾股定理,可得结论.
解答 解:取PF2的中点A,则
∵$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,
∴$\overrightarrow{OA}$⊥$\overrightarrow{{F}_{2}P}$
∵O是F1F2的中点
∴OA∥PF1,
∴PF1⊥PF2,
∵|PF1|=3|PF2|,
∴2a=|PF1|-|PF2|=2|PF2|,
∵|PF1|2+|PF2|2=4c2,
∴10a2=4c2,
∴e=$\frac{\sqrt{10}}{2}$
故选C.
点评 本题考查向量知识的运用,考查双曲线的定义,利用向量确定PF1⊥PF2是关键.
练习册系列答案
相关题目
12.已知集合A={1,2,3,4},B={x|x=2n,n∈A },则A∩B=( )
| A. | { 1,4} | B. | { 2,4} | C. | { 9,16} | D. | {2,3} |
16.心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全球组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题,代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如表:(单位:人)
(Ⅰ)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(Ⅱ)经统计得,选择做立体几何题的学生正答率为$\frac{4}{5}$,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行探究,记抽取的两人中答对的人数为X,求 X的分布列及数学期望.
附表及公式
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
| 立体几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
(Ⅱ)经统计得,选择做立体几何题的学生正答率为$\frac{4}{5}$,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行探究,记抽取的两人中答对的人数为X,求 X的分布列及数学期望.
附表及公式
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |