题目内容
3.执行如图的程序框图,若输入k的值为3,则输出S的值为$\frac{77}{8}$.分析 模拟程序框图的运行过程,即可得出该程序运行后输出的S值.
解答 解:执行如图所示的程序框图,如下;
k=3,n=1,S=1,
满足条件2S<kn,执行循环体,n=2,S=$\frac{5}{3}$,
满足条件2S<kn,执行循环体,n=3,S=$\frac{35}{12}$,
满足条件2S<kn,执行循环体,n=4,S=$\frac{21}{4}$,
满足条件2S<kn,执行循环体,n=5,S=$\frac{77}{8}$,
不满足条件2S<kn,终止循环,输出S的值为$\frac{77}{8}$.
故答案为:$\frac{77}{8}$.
点评 本题考查了程序框图的应用问题,解题时应模拟程序的运用过程,是基础题目.
练习册系列答案
相关题目
14.
已知实数x、y的取值如表所示
(1)请根据表数据在下面网格纸中绘制散点图;
(2)请根据表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
| x | 0 | 1 | 3 | 4 |
| y | 1 | 2 | 3 | 4.4 |
(2)请根据表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
18.
空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数.空气质量分分级与AQI大小关系如表所示:
某环保人士从2016年11月甲地的AQI记录数据轴,随机抽取了7天的AQI数据,用茎叶图记录如下:
(Ⅰ)若甲地每年同期的空气质量状况变化不大,请根据统计数据估计2017年11月甲地空气质量为良的天数(结果精确到天);
(Ⅱ)从甲地的这7个数据中任意抽取2个,求AQI均超过100的概率.
| AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
| 空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
(Ⅰ)若甲地每年同期的空气质量状况变化不大,请根据统计数据估计2017年11月甲地空气质量为良的天数(结果精确到天);
(Ⅱ)从甲地的这7个数据中任意抽取2个,求AQI均超过100的概率.
8.
为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,经木兰溪流经河段分成10段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如表:
(1)记评分在80以上(包括80)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;
(2)根据表中的数据完成茎叶图:
(3)分别估计两岸分值的中位数,并计算它们的平均数,试从计算结果分析两岸环保情况,哪边保护更好?
| 南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
| 北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(2)根据表中的数据完成茎叶图:
(3)分别估计两岸分值的中位数,并计算它们的平均数,试从计算结果分析两岸环保情况,哪边保护更好?
15.
斐波拉契数列0,1,1,2,3,5,8…是数学史上一个著名的数列,定义如下:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N).某同学设计了一个求解斐波拉契数列前15项和的程序框图,那么在空白矩形和判断框内应分别填入的词句是( )
| A. | c=a,i≤14 | B. | b=c,i≤14 | C. | c=a,i≤15 | D. | b=c,i≤15 |