题目内容

函数f(x)=x2+bx在点A(1,f(1))处的切线方程为3x-y-1=0,设数列{
1
f(n)
}的前n项和Sn,则S2011为(  )
A、
2008
2009
B、
2009
2010
C、
2010
2011
D、
2011
2012
考点:数列的求和
专题:等差数列与等比数列
分析:f′(x)=2x+b,由已知条件得b+2=3,f(x)=x2+x,所以 
1
f(n)
=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂项求和法能求出S2011
解答: 解:∵f(x)=x2+bx,∴f′(x)=2x+b,
∴y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2+b,
∵切线与直线3x-y+2=0平行,∴b+2=3,
∴b=1,f(x)=x2+x,
∴f(n)=n2+n=n(n+1)
1
f(n)
=
1
n(n+1)
=
1
n
-
1
n+1

∴S2011=
1
f(1)
+
1
f(2)
+…+
1
f(2011)

=1-
1
2
+
1
2
-
1
3
+…+
1
2011
-
1
2012

=1-
1
2012

=
2011
2012

故选:D.
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意导数性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网