题目内容
过双曲线
-
=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:双曲线的右焦点的坐标为(c,0),利用O为FF'的中点,E为FP的中点,可得OE为△PFF'的中位线,从而可求|PF|,再设P(x,y) 过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答:
解:设双曲线的右焦点为F',则F'的坐标为(c,0)
因为抛物线为y2=4cx,所以F'为抛物线的焦点
因为O为FF'的中点,E为FP的中点,所以OE为△PFF'的中位线,
所以OE∥PF'
因为|OE|=a,所以|PF'|=2a
又PF'⊥PF,|FF'|=2c 所以|PF|=2b
设P(x,y),则由抛物线的定义可得x+c=2a,
所以x=2a-c
过点F作x轴的垂线,点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2)
得e2-e-1=0,
∴e=
.
故选:A.
因为抛物线为y2=4cx,所以F'为抛物线的焦点
因为O为FF'的中点,E为FP的中点,所以OE为△PFF'的中位线,
所以OE∥PF'
因为|OE|=a,所以|PF'|=2a
又PF'⊥PF,|FF'|=2c 所以|PF|=2b
设P(x,y),则由抛物线的定义可得x+c=2a,
所以x=2a-c
过点F作x轴的垂线,点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2)
得e2-e-1=0,
∴e=
1+
| ||
| 2 |
故选:A.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查抛物线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关题目
下列函数中,在(0,+∞)内为增函数的是( )
| A、sin2x |
| B、x+sinx |
| C、x3-x |
| D、-x+ln(1+x) |
已知双曲线
-x2=1与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为( )
| y2 |
| 3 |
A、2
| ||
B、4
| ||
C、3
| ||
D、4
|
设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=-1,f(-1)=2,则f(2008)=( )
| A、0.5 | B、0 | C、2 | D、-1 |
若抛物线C1:y2=4x的焦点F恰好是双曲线C2:
-
=1(a>0,b>0)的右焦点,且C1与C2交点的连线过点F,则双曲线C2的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||||
B、2
| ||||||
C、3+2
| ||||||
D、
|
若不等式组
表示的平面区域经过四个象限,则实数λ的取值范围是( )
|
| A、(-∞,2) |
| B、[-1,1] |
| C、[-1,2) |
| D、(1,+∞) |