题目内容
12.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=( )| A. | 4 | B. | 2 | C. | 1 | D. | 0 |
分析 把已知函数解析式变形,可得f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),结合g(2-x)+g(x)=0,可得g(x)关于(1,0)中心对称,则f(x)在[-1,3]上关于(1,2)中心对称,从而求得M+m的值.
解答 解:∵f(x)=(x2-2x)sin(x-1)+x+1=[(x-1)2-1]sin(x-1)+x-1+2
令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),
而g(2-x)=(x-1)2sin(1-x)-sin(1-x)+(1-x),
∴g(2-x)+g(x)=0,
则g(x)关于(1,0)中心对称,则f(x)在[-1,3]上关于(1,2)中心对称.
∴M+m=4.
故选:A.
点评 本题考查函数在闭区间上的最值,考查函数奇偶性性质的应用,考查数学转化思想方法,属中档题.
练习册系列答案
相关题目
2.若$tanθ=-\frac{1}{3},θ∈(\frac{π}{2},π),则cos2θ$=( )
| A. | $-\frac{4}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
3.将一颗骰子连续抛掷2次,则向上的点数之和为8的概率为( )
| A. | $\frac{1}{9}$ | B. | $\frac{5}{36}$ | C. | $\frac{3}{18}$ | D. | $\frac{1}{72}$ |
7.已知双曲线$\frac{y^2}{4}-{x^2}=1$的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若△OAB的面积为1,则p的值为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 4 |
4.复数$z=2i+\frac{2}{1+i}$(i是虚数单位)在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |