题目内容

2.若$tanθ=-\frac{1}{3},θ∈(\frac{π}{2},π),则cos2θ$=(  )
A.$-\frac{4}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

分析 利用二倍角公式,同角三角函数基本关系式化简所求,结合已知即可计算得解.

解答 解:∵tan$θ=-\frac{1}{3}$,
∴cos2θ=$\frac{co{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{1-\frac{1}{9}}{1+\frac{1}{9}}$=$\frac{4}{5}$.
故选:D.

点评 本题考查二倍角的余弦公式,考查同角三角函数关系的运用,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网