题目内容

20.已知函数f(x)=3sin(ωx+ϕ)$(ω>0,|ϕ|≤\frac{π}{2})$的部分图象如图所示,A,B两点之间的距离为10,且f(2)=0,若将函数f(x)的图象向右平移t(t>0)的单位长度后所得函数图象关于y轴对称,则t的最小值为(  )
A.1B.2C.3D.4

分析 根据图象求出A,ω 和φ,即可求函数f(x)的解析式;在平移变换函数图象关于y轴对称求解t的关系式.

解答 解:由题设图象知,周期$\frac{1}{2}$T=|AB|,解得:T=20,
∴ω=$\frac{2π}{T}$=$\frac{π}{10}$.
可得f(x)=3sin($\frac{π}{10}x$+ϕ)
∵f(2)=0,
∴sin($\frac{π}{10}×2$+ϕ)=0,
∵$-\frac{π}{2}≤$Φ$≤\frac{π}{2}$,
∴ϕ=$-\frac{π}{5}$.
故得f(x)=3sin($\frac{π}{10}x$-$\frac{π}{5}$)
将函数f(x)的图象向右平移t(t>0)的单位可得:y=3sin[$\frac{π}{10}(x-t)$)$-\frac{π}{5}$]=3in($\frac{π}{10}x-\frac{π}{10}t-\frac{π}{5}$),
函数图象关于y轴对称,
∴$-\frac{π}{10}t-\frac{π}{5}=\frac{π}{2}+kπ$,
整理得:-t=7+10k,
∵t>0,
∴当k=-1时,t的最小值为3.
故选C

点评 本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网