ÌâÄ¿ÄÚÈÝ
17£®Ä³¹«Ë¾ÔÚÓÐÂÄêÍí»áÉϾÙÐг齱»î¶¯£¬Óмף¬ÒÒÁ½¸ö³é½±·½°¸¹©Ô±¹¤Ñ¡Ôñ£®·½°¸¼×£ºÔ±¹¤×î¶àÓÐÁ½´Î³é½±»ú»á£¬Ã¿´Î³é½±µÄÖн±ÂʾùΪ$\frac{4}{5}$£¬µÚÒ»´Î³é½±£¬ÈôδÖн±£¬Ôò³é½±½áÊø£¬ÈôÖн±£¬Ôòͨ¹ýÅ×һöÖʵؾùÔȵÄÓ²±Ò£¬¾ö¶¨ÊÇ·ñ¼ÌÐø½øÐеڶþ´Î³é½±£¬¹æ¶¨£ºÈôÅ׳öÓ²±Ò£¬·´Ã泯ÉÏ£¬Ô±¹¤Ôò»ñµÃ500Ôª½±½ð£¬²»½øÐеڶþ´Î³é½±£»ÈôÕýÃæ³¯ÉÏ£¬Ô±¹¤ÔòÐë½øÐеڶþ´Î³é½±£¬ÇÒÔÚµÚ¶þ´Î³é½±ÖУ¬ÈôÖн±£¬Ôò»ñµÃ1000Ôª£»ÈôδÖн±£¬ÔòËù»ñµÃ½±½ðΪ0Ôª£®
·½°¸ÒÒ£ºÔ±¹¤Á¬ÐøÈý´Î³é½±£¬Ã¿´ÎÖн±ÂʾùΪ$\frac{2}{5}$£¬Ã¿´ÎÖн±¾ù¿É»ñµÃ½±½ð400Ôª£®
£¨¢ñ£©ÇóijԱ¹¤Ñ¡Ôñ·½°¸¼×½øÐг齱Ëù»ñ½±½ðX£¨Ôª£©µÄ·Ö²¼ÁУ»
£¨¢ò£©ÊԱȽÏijԱ¹¤Ñ¡Ôñ·½°¸ÒÒÓëÑ¡Ôñ·½°¸¼×½øÐг齱£¬Äĸö·½°¸¸ü»®Ë㣿
·ÖÎö £¨I£©ÀûÓÃÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨II£©ÀûÓÃÊýѧÆÚÍû¼ÆË㹫ʽ¡¢¶þÏî·Ö²¼ÁеÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©$P£¨{X=0}£©=\frac{1}{5}+\frac{4}{5}¡Á\frac{1}{2}¡Á\frac{1}{5}=\frac{7}{25}$£¬$P£¨{X=500}£©=\frac{4}{5}¡Á\frac{1}{2}=\frac{2}{5}$£¬$P£¨{X=1000}£©=\frac{4}{5}¡Á\frac{1}{2}¡Á\frac{4}{5}=\frac{8}{25}$£¬
ËùÒÔijԱ¹¤Ñ¡Ôñ·½°¸¼×½øÐг齱Ëù»ñ½±½ðX£¨Ôª£©µÄ·Ö²¼ÁÐΪ
| X | 0 | 500 | 1000 |
| P | $\frac{7}{25}$ | $\frac{2}{5}$ | $\frac{8}{25}$ |
ÈôÑ¡Ôñ·½°¸ÒÒ½øÐг齱Öн±´ÎÊý¦Î¡«B$£¨3£¬\frac{2}{5}£©$£¬Ôò$E£¨¦Î£©=3¡Á\frac{2}{5}=\frac{6}{5}$£¬
³é½±Ëù»ñ½±½ðXµÄ¾ùÖµE£¨X£©=E£¨400¦Î£©=400E£¨¦Î£©=480£¬
¹ÊÑ¡Ôñ·½°¸¼×½Ï»®Ë㣮
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¡¢ÊýѧÆÚÍû¼ÆË㹫ʽ¡¢¶þÏî·Ö²¼ÁеÄÐÔÖÊ£¬¿¼²éÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÔÚ¡÷ABCÖУ¬Èôb=3£¬A=120¡ã£¬Èý½ÇÐεÄÃæ»ý$S=\frac{9}{4}\sqrt{3}$£¬ÔòÈý½ÇÐÎÍâ½ÓÔ²µÄ°ë¾¶Îª£¨¡¡¡¡£©
| A£® | $\frac{2}{3}\sqrt{3}$ | B£® | 3 | C£® | $\frac{4}{3}\sqrt{3}$ | D£® | 6 |
5£®Èô¼¯ºÏM={x|log2x£¼1}£¬¼¯ºÏN={x|x2-1¡Ü0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| A£® | {x|1¡Üx£¼2} | B£® | {x|-1¡Üx£¼2} | C£® | {x|-1£¼x¡Ü1} | D£® | {x|0£¼x¡Ü1} |
12£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-2x£©sin£¨x-1£©+x+1ÔÚ[-1£¬3]ÉϵÄ×î´óֵΪM£¬×îСֵΪm£¬ÔòM+m=£¨¡¡¡¡£©
| A£® | 4 | B£® | 2 | C£® | 1 | D£® | 0 |
9£®Éèm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¡°m¡Î¦Á£¬m¡Î¦Â¡±ÊÇ¡°¦Á¡Î¦Â¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ | |
| B£® | m¡Înʱ£¬¡°m¡Î¦Â¡±ÊÇ¡°n¡Î¦Â¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | |
| C£® | n?¦Áʱ£¬¡°m¡Í¦Á¡±ÊÇ¡°m¡Ín¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ | |
| D£® | m¡Í¦Á£¬n¡Í¦Âʱ£¬¡°m¡Ín¡±ÊÇ¡°¦Á¡Í¦Â¡±µÄ³äÒªÌõ¼þ |
6£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬x£¼2}\\{{x}^{2}£¬x¡Ý2}\end{array}\right.$£¬Èôf£¨a+1£©¡Ýf£¨2a-1£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬1] | B£® | £¨-¡Þ£¬2] | C£® | [2£¬6] | D£® | [2£¬+¡Þ£© |