题目内容

11.如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,$\frac{BQ}{QC}$=$\frac{CR}{RA}$=2,分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α、β、γ,则(  )
A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α

分析 解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,-3,0),C(0,-6,0),D(0,0,6$\sqrt{2}$),Q$(\sqrt{3},2,0)$,R$(-2\sqrt{3},0,0)$,利用法向量的夹角公式即可得出二面角.
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=$\frac{OD}{OE}$.tanβ=$\frac{OD}{OF}$,tanγ=$\frac{OD}{OG}$.由已知可得:OE>OG>OF.即可得出.

解答 解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.
不妨设OP=3.则O(0,0,0),P(0,-3,0),C(0,-6,0),D(0,0,6$\sqrt{2}$),
Q$(\sqrt{3},2,0)$,R$(-2\sqrt{3},0,0)$,
$\overrightarrow{PR}$=$(-2\sqrt{3},3,0)$,$\overrightarrow{PD}$=(0,3,6$\sqrt{2}$),$\overrightarrow{PQ}$=($\sqrt{3}$,5,0),$\overrightarrow{QR}$=$(-3\sqrt{3},-2,0)$,
$\overrightarrow{QD}$=$(-\sqrt{3},-2,6\sqrt{2})$.
设平面PDR的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PR}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{-2\sqrt{3}x+3y=0}\\{3y+6\sqrt{2}z=0}\end{array}\right.$,
可得$\overrightarrow{n}$=$(\sqrt{6},2\sqrt{2},-1)$,取平面ABC的法向量$\overrightarrow{m}$=(0,0,1).
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{15}}$,取α=arccos$\frac{1}{\sqrt{15}}$.
同理可得:β=arccos$\frac{3}{\sqrt{681}}$.γ=arccos$\frac{\sqrt{2}}{\sqrt{95}}$.
∵$\frac{1}{\sqrt{15}}$>$\frac{\sqrt{2}}{\sqrt{95}}$>$\frac{3}{\sqrt{681}}$.
∴α<γ<β.
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.
设OD=h.
则tanα=$\frac{OD}{OE}$.
同理可得:tanβ=$\frac{OD}{OF}$,tanγ=$\frac{OD}{OG}$.
由已知可得:OE>OG>OF.
∴tanα<tanγ<tanβ,α,β,γ为锐角.
∴α<γ<β.
故选:B.

点评 本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网