题目内容
若
<α<
,0<β<
且sin(α+
)=
,cos(
+β)=
,求sin(α+β)的值.
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 5 |
| 13 |
考点:两角和与差的正弦函数
专题:三角函数的图像与性质
分析:首先,根据sin(α+
)=
,cos(
+β)=
,求解cos(α+
),sin(
+β),然后,结合诱导公式进行求值.
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 5 |
| 13 |
| π |
| 4 |
| π |
| 4 |
解答:
解:∵
<α<
,
∴
<α+
<π,
∴cos(α+
)=-
=-
,
又∵0<β<
,
∴
<β+
<
,
∴sin(β+
)=
=
,
又∵-sin(α+β)=cos(α+β+
)=cos[(α+
)+(β+
)]
=cos(α+
)cos(β+
)-sin(α+
)sin(β+
)
=(-
)×
-
×
=-
,
∴sin(α+β)=
.
| π |
| 4 |
| 3π |
| 4 |
∴
| π |
| 2 |
| π |
| 4 |
∴cos(α+
| π |
| 4 |
1-sin2(α+
|
| 4 |
| 5 |
又∵0<β<
| π |
| 4 |
∴
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∴sin(β+
| π |
| 4 |
1-cos2(α+
|
| 12 |
| 13 |
又∵-sin(α+β)=cos(α+β+
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
=cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=(-
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
| 3 |
| 5 |
| 56 |
| 65 |
∴sin(α+β)=
| 56 |
| 65 |
点评:本题重点考查了三角函数的求值、三角恒等变换公式等知识,属于中档题.
练习册系列答案
相关题目
设a>b>0,a+b=1且x=(
)b,y=log (
+
)a,z=log
a,则x,y,z的大小关系是( )
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
| 1 |
| b |
| A、y<x<z |
| B、z<y<x |
| C、y<z<x |
| D、x<y<z |