题目内容
3.已知$\left\{\begin{array}{l}x+y-1≥0\\ x+2y-4≤0\\ x-y-1≤0\end{array}\right.$,则$\frac{y+1}{x+3}$的最小值为$\frac{1}{4}$.分析 首先画出可行域,利用目标函数的几何意义求最小值.
解答
解:由已知得到可行域如图:目标函数表示区域内的点与B(-3,-1)连接直线的斜率,由此点的直线AB 的斜率最小,所以最小为$\frac{0+1}{1+3}=\frac{1}{4}$;
故答案为:$\frac{1}{4}$.
点评 本题考查了简单线性规划问题;首先画出可行域,利用目标函数的几何意义求最值.考查数形结合的思想.
练习册系列答案
相关题目
20.已知圆x2+y2-4x-6y+9=0与直线y=kx+3相交于A,B两点,若$|{AB}|≥2\sqrt{3}$,则k的取值范围是( )
| A. | [-$\frac{3}{4}$,0] | B. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | C. | [-$\sqrt{3}$,$\sqrt{3}$] | D. | [-$\frac{2}{3}$,0] |
1.已知数列{an}满足a2=2,2an+1=an,则数列{an}的前6项和S6等于( )
| A. | $\frac{63}{16}$ | B. | $\frac{63}{12}$ | C. | $\frac{63}{8}$ | D. | $\frac{63}{4}$ |
18.平面向量$\vec a,\vec b,\vec c$不共线,且两两所成的角相等,|$\overrightarrow a|=|\overrightarrow b|=2,|\overrightarrow c|=1$,$\overrightarrow m=\overrightarrow a-2017\overrightarrow c$,则$(\overrightarrow a-\overrightarrow b)•\overrightarrow m$=( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 6 |
8.下列结论正确的是( )
| A. | 命题“如果p2+q2=2,则p+q≤2”的否命题是“如果p+q>2,则p2+q2≠2” | |
| B. | 命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∨q为假 | |
| C. | 若($\sqrt{x}$-$\frac{1}{2\root{3}{x}}$)n的展开式中第四项为常数项,则n=5 | |
| D. | “若am2<bm2,则a<b”的逆命题为真命题. |
15.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$在$\overrightarrow{{e}_{1}}$上的投影是( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
12.已知数列{an}为等比数列,其前n项和为Sn,则下列结论正确的是( )
| A. | 若a1+a2>0,则a1+a3>0 | B. | 若a1+a3>0,则a1+a2>0 | ||
| C. | 若a1>0,则S2017>0 | D. | 若a1>0,则S2016>0 |