题目内容
在数列{an}中,a1=4,a2=10,若{log3(an-1)}为等差数列,且Tn=
+
+…+
等于( )
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| an+1-an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:数列的求和
专题:等差数列与等比数列
分析:由{log3(an-1)}为等差数列得到数列{an-1}为等比数列,求出等比数列的通项公式后进一步得到
=
,然后利用等比数列的前n项和得答案.
| 1 |
| an+1-an |
| 1 |
| 2•3n |
解答:
解:∵{log3(an-1)}为等差数列,
∴2log3(an-1)=log3(an-1-1)+log3(an+1-1)(n≥2),
即log3(an-1)2=log3(an-1-1)(an+1-1)(n≥2),
(an-1)2=(an-1-1)(an+1-1)(n≥2),
则数列{an-1}为等比数列.
首项为a1-1=4-1=3,公比为
=
=3.
则an-1=3n.
∴
=
=
.
则Tn=
+
+…+
=
+
+…+
=
(
+
+…+
)
=
×
=
(1-
).
故选:B.
∴2log3(an-1)=log3(an-1-1)+log3(an+1-1)(n≥2),
即log3(an-1)2=log3(an-1-1)(an+1-1)(n≥2),
(an-1)2=(an-1-1)(an+1-1)(n≥2),
则数列{an-1}为等比数列.
首项为a1-1=4-1=3,公比为
| a2-1 |
| a1-1 |
| 10-1 |
| 3 |
则an-1=3n.
∴
| 1 |
| an+1-an |
| 1 |
| 3n+1+1-3n-1 |
| 1 |
| 2•3n |
则Tn=
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| an+1-an |
=
| 1 |
| 2×3 |
| 1 |
| 2×32 |
| 1 |
| 2•3n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
=
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 4 |
| 1 |
| 3n |
故选:B.
点评:本题考查了等比关系的确定,考查了等比数列的前n项和,是中档题.
练习册系列答案
相关题目
已知f(x)=x4-4x2+6,则f(x)( )
| A、在(-2,0)上递增 | ||
| B、在(0,2)上递增 | ||
C、在(-
| ||
D、在(0,
|
已知函数f(x)=cosx+sinα,f′(
)=( )
| π |
| 2 |
| A、0 | B、1 | C、-1 | D、2 |
若p=
+
,q=
+
,则p,q的大小关系是( )
| 2 |
| 5 |
| 3 |
| 4 |
| A、p<q | B、p=q |
| C、p>q | D、无法确定 |
已知|
|=1,|
|=
,(
-
)•
=0,则
与
的夹角是( )
| a |
| b |
| 2 |
| a |
| b |
| a |
| a |
| b |
| A、60° | B、90° |
| C、45° | D、30° |
| lim |
| △x→0 |
| f(x0-2△x)-f(x0) |
| 3△x |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
Z=x+yi(x,y∈R),当|Z|=1时,x,y满足y-kx+2k=0,则k的取值范围( )
A、[-
| ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|