题目内容
用放缩法证明:
-
<
+
+
<
(n=2,3,4…)
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| n-1 |
| n |
考点:反证法与放缩法
专题:证明题,推理和证明
分析:利用放缩法,结合裂项求和,即可证明结论.
解答:
证明:
+
+…+
>
+
+…+
=
-
+
-
+…+
-
=
-
;
+
+…+
<
+
+…+
=1-
+
-
+…+
-
=1-
,
∴:
-
<
+
+…+
<
.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
∴:
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| n-1 |
| n |
点评:本题考查放缩法,正确放缩、裂项求和是关键.
练习册系列答案
相关题目
已知{an}是等差数列,若2a7-a5-3=0,则a9的值是( )
| A、9 | B、6 | C、3 | D、1 |
已知集合A={(x,y)|
},B={(x,y)|x2+(y-1)2≤m},若A⊆B,则m的取值范围是( )
|
| A、[1,+∞) | ||
B、[
| ||
| C、[2,+∞) | ||
D、[
|