题目内容

直线x+y=0被圆(x-2)2+y2=4截得的弦长为(  )
A、
2
2
B、
2
C、2
2
D、2
考点:直线与圆相交的性质
专题:计算题,直线与圆
分析:由圆的标准方程,求出圆心与半径,然后利用点到直线的距离求弦长.
解答: 解:圆的标准方程为(x-2)2+y2=4,圆心为P(2,0),半径为r=2.
所以圆心到直线的距离d=
2
2
=
2

所以弦长l=2
r2-d2
=2
2

故选:C.
点评:本题主要考查了直线与圆的位置关系以及弦长公式,正确利用弦长公式是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网