题目内容

5.已知函数f(x)=|x+1|+|x-1|.
(1)若?x0∈R,使得不等式f(x0)≤m成立,求实数m的最小值M;
(2)在(1)的条件下,若正数a,b满足3a+b=m,求$\frac{1}{2a}+\frac{1}{a+b}$的最小值.

分析 (1)由绝对值不等式的性质,求得f(x)的最小值,令m不小于最小值,即可得到所求M;
(2)由题意可得3a+b=2,运用乘1法和基本不等式,即可得证.

解答 解:(1)由题意,不等式|x+1|+|x-1|≤m有解,即m≥(|x+1|+|x-1|)min=M.
∵|x+1|+|x-1|≥|(x+1)-(x-1)|=2,当且仅当(x+1)(x-1)≤0⇒-1≤x≤1时取等号,
∴M=2.
(2)由(1)得3a+b=2,
∴$\frac{1}{2a}+\frac{1}{a+b}=\frac{1}{2}(3a+b)(\frac{1}{2a}+\frac{1}{a+b})=\frac{1}{2}[2a+(a+b)](\frac{1}{2a}+\frac{1}{a+b})$=$\frac{1}{2}(1+\frac{2a}{a+b}+\frac{a+b}{2a}+1)≥\frac{1}{2}(2+2\sqrt{1})=2$,
当且仅当$\frac{2a}{a+b}=\frac{a+b}{2a}⇒a=b=\frac{1}{2}$时取等号,
故${(\frac{1}{2a}+\frac{1}{a+b})_{min}}=2$.

点评 本题考查绝对值不等式的性质的运用:求最值,考查存在性问题的解法,以及基本不等式的运用,注意运用乘1法和满足的条件:一正二定三等,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网