题目内容

5.已知函数$f(x)=4sinxcos({x-\frac{π}{3}})-\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期、零点;
(Ⅱ)求f(x)在区间$[{\frac{π}{24},\frac{3π}{4}}]$上的最大值和最小值.

分析 (1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,令f(x)=0,解得x的值即为零点.
(2)x∈$[{\frac{π}{24},\frac{3π}{4}}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,即得出f(x)的最大值和最小值.

解答 解:函数$f(x)=4sinxcos({x-\frac{π}{3}})-\sqrt{3}$.
化简可得:f(x)=4sinx($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)-$\sqrt{3}$
=2sinxcosx+2$\sqrt{3}$sin2x-$\sqrt{3}$
=sin2x+$2\sqrt{3}(\frac{1}{2}-\frac{1}{2}cos2x)-\sqrt{3}$
=sin2x-$\sqrt{3}$cos2x
=2sin(2x-$\frac{π}{3}$)
(Ⅰ)∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
令$f(x)=2sin({2x-\frac{π}{3}})=0$,
即$2x-\frac{π}{3}=kπ,k∈{Z}$
∴函数f(x)的零点是$x=\frac{π}{6}+k\frac{π}{2},k∈{Z}$.
(Ⅱ)∵$\frac{π}{24}≤x≤\frac{3π}{4}$,
∴$-\frac{π}{4}≤2x-\frac{π}{3}≤\frac{7π}{6}$.
∴当$2x-\frac{π}{3}=-\frac{π}{4}$,即$x=\frac{π}{24}$时,函数f(x)的最小值为$-\sqrt{2}$;
当$2x-\frac{π}{3}=\frac{π}{2}$,即$x=\frac{5π}{12}$时,函数f(x)的最大值为2.
∴f(x)在区间$[{\frac{π}{24},\frac{3π}{4}}]$上的最大值为2,最小值$-\sqrt{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网