题目内容

17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$.
(1)求角C;
(2)若$c=\sqrt{3}$,求b-2a的取值范围.

分析 (1)由余弦定理,得a2+b2-c2=2abcosC,从而$2abcosCsinC=\sqrt{3}abcosC$,进而$sinC=\frac{{\sqrt{3}}}{2}$,由此能求出C.
(2)由正弦定理,得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\frac{{\sqrt{3}}}{{\frac{{\sqrt{3}}}{2}}}=2$,从而$b-2a=2\sqrt{3}cos({A+\frac{π}{3}})$,进而$\frac{π}{6}<A<\frac{π}{2}$,由此能求出b-2a的取值范围.

解答 解:(1)由余弦定理,可得a2+b2-c2=2abcosC,
∵$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$,
∴$2abcosCsinC=\sqrt{3}abcosC$,
∴$sinC=\frac{{\sqrt{3}}}{2}$,
又$0<C<\frac{π}{2}$,∴$C=\frac{π}{3}$.
(2)由正弦定理,$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\frac{{\sqrt{3}}}{{\frac{{\sqrt{3}}}{2}}}=2$,
∴$b-2a=2sinB-4sinA=2sin({\frac{2π}{3}-A})-4sinA=\sqrt{3}cosA-3sinA$,
$b-2a=2\sqrt{3}cos({A+\frac{π}{3}})$
∵△ABC是锐角三角形,
∴$\left\{\begin{array}{l}0<A<\frac{π}{2},\;\;\\ 0<\frac{2π}{3}-A<\frac{π}{2},\;\;\end{array}\right.$得$\frac{π}{6}<A<\frac{π}{2}$,
∴$\frac{π}{2}<A+\frac{π}{3}<\frac{5π}{6}$,$cos({A+\frac{π}{3}})∈({-\frac{{\sqrt{3}}}{2},\;\;0})$,
∴b-2a的取值范围是(-3,0).

点评 本题考查三角形的内角求法,考查三角形的边的代数式的取值范围的求法,考查同角三角函数关系式、正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网