题目内容
15.已知sin$α=\frac{1}{3}$,α是第二象限角,则sin2α+cos2α=( )| A. | $\frac{7-4\sqrt{2}}{9}$ | B. | $\frac{2\sqrt{2}-1}{3}$ | C. | $\frac{7-3\sqrt{2}}{9}$ | D. | $\frac{2\sqrt{3}-1}{3}$ |
分析 根据已知及二倍角公式,可先求cosα的值,从而可求sin2α,cos2α的值,即可计算得解.
解答 解:∵sinα=$\frac{1}{3}$,α为第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=2×$\frac{1}{3}×$(-$\frac{2\sqrt{2}}{3}$)=-$\frac{4\sqrt{2}}{9}$,cos2α=1-2sin2α=$\frac{7}{9}$,
∴sin2α+cos2α=$\frac{7}{9}$-$\frac{4\sqrt{2}}{9}$=$\frac{7-4\sqrt{2}}{9}$.
故选:A.
点评 本题主要考察了二倍角公式,同角三角函数关系式的应用,属于基本知识的考查.
练习册系列答案
相关题目
6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,则sin(2α$+\frac{31π}{30}$)=( )
| A. | $\frac{3}{5}$ | B. | $\frac{7}{25}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{5}$ |
10.已知双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}=1$(b>0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线方程为( )
| A. | $\frac{{x}^{2}}{4}-\frac{3{y}^{2}}{4}=1$ | B. | $\frac{{x}^{2}}{4}-\frac{4{y}^{2}}{3}=1$ | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}=1$ | D. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$ |
20.定积分${∫}_{0}^{3}$$\sqrt{9-{x}^{2}}$dx的值是( )
| A. | 9π | B. | $\frac{9π}{2}$ | C. | $\frac{9}{4}$π | D. | $\frac{9}{8}$π |
7.已知a=0.92,b=20.9,c=log20.9,则a,b,c的大小关系为( )
| A. | b<a<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |