题目内容

在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=
π
4
,cos
B
2
=
2
5
5
,则△ABC的面积S=
 
考点:正弦定理
专题:解三角形
分析:cos
B
2
=
2
5
5
,利用倍角公式可得cosB=2cos2
B
2
-1
=
3
5
,利用同角三角函数基本关系式可得sinB=
4
5
.利用三角形的内角和定理与两角和差的正弦公式可得sinA=sin(B+C)=sinBcos
π
4
+cosBsin
π
4
.由正弦定理可得:
a
sinA
=
b
sinB
,利用S△ABC=
1
2
absinC
即可得出.
解答: 解:∵cos
B
2
=
2
5
5
,∴cosB=2cos2
B
2
-1
=
3
5
,∴sinB=
4
5

∴sinA=sin(B+C)=sinBcos
π
4
+cosBsin
π
4
=
4
5
×
2
2
+
3
5
×
2
2
=
7
2
10

由正弦定理可得:
a
sinA
=
b
sinB

b=
asinB
sinA
=
8
2
7

∴S△ABC=
1
2
absinC
=
1
2
×2×
8
2
7
×
2
2
=
8
7

故答案为:
8
7
点评:本题考查了倍角公式、同角三角函数基本关系式、三角形的内角和定理与两角和差的正弦公式、正弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网