题目内容

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足:$\sqrt{3}a=\sqrt{3}ccosB+bsinC$.
(1)求∠C的值;
(2)若$c=2\sqrt{3}$,求2a+b的最大值.

分析 (1)利用正弦定理以及和与差的公式化简,可得∠C的值;
(2)利用正弦定理将边化角,利用三角函数的有界限即可求出2a+b的最大值.

解答 解:(1)∵:$\sqrt{3}a=\sqrt{3}ccosB+bsinC$.
由正弦定理,可得:$\sqrt{3}$sinA=$\sqrt{3}$sinCcosB+sinBsinC.
∵$\sqrt{3}$sinA=$\sqrt{3}$sin(B+C)=$\sqrt{3}$sinCcosB+$\sqrt{3}$sinBcosC=$\sqrt{3}$sinCcosB+sinBsinC.
∴$\sqrt{3}$sinBcosC=sinBsinC.
∵0<B<π,sinB≠0
∴$\sqrt{3}$cosC=sinC,即tanC=$\sqrt{3}$.
∵0<C<π,
C=$\frac{π}{3}$.
(2)由(1)知C=$\sqrt{3}$,应用正弦定理可得:$\frac{2\sqrt{3}}{sin\frac{π}{3}}=\frac{a}{sinA}=\frac{b}{sinB}$,
∴2a+b=8sinA+4sinB=8sinA+4sin(120°-A)=10sinA+2$\sqrt{3}$cosA=$\sqrt{1{0}^{2}+(2\sqrt{3})^{2}}sin(A+$θ).
其中tanθ=$\frac{\sqrt{3}}{5}$.
由正弦函数的性质可得:2a+b的最大值为$4\sqrt{7}$.

点评 本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网