题目内容
9.已知实数x,y满足方程x2+y2-4x+1=0,则$\frac{y}{x}$的最小值为-$\sqrt{3}$.分析 整理方程可知,方程表示以点(2,0)为圆心,以$\sqrt{3}$为半径的圆,设$\frac{y}{x}$=k,进而根据圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.
解答 解:方程x2+y2-4x+1=0表示以点(2,0)为圆心,以$\sqrt{3}$为半径的圆.
设$\frac{y}{x}$=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值,
由$\frac{|2k-0|}{\sqrt{{k}^{2}+1}}$=$\sqrt{3}$,解得k2=3.
∴kmax=$\sqrt{3}$,kmin=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$.
点评 此题考查了直线与圆的位置关系,以及斜率的计算公式,弄清题意是解本题的关键.
练习册系列答案
相关题目
18.记$\underset{\stackrel{n}{U}}{k-1}$Ak=A1∪A2∪A3∪…∪An,n∈N,设集合Ak={y|y=$\frac{kx+1}{\sqrt{kx}}$•$\frac{1}{k}$≤x≤1,k-2,3,…,2015},则$\underset{\stackrel{2015}{U}}{k-2}$Ak=( )
| A. | ∅ | B. | {2,$\frac{3\sqrt{2}}{2}$} | C. | {2} | D. | [2,$\frac{2016\sqrt{2015}}{2015}$] |
18.已知$sin(x-\frac{3π}{2})=\frac{4}{5}$,则cos(π-x)=( )
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |