题目内容

5.函数y=2sin($\frac{π}{6}$-2x)(其中x∈[-π,0])的单调递增区间是(  )
A.$[{-π,-\frac{5π}{6}}]$B.$[{-\frac{π}{3},0}]$C.$[{-\frac{2π}{3},-\frac{π}{6}}]$D.$[{-\frac{π}{3},-\frac{π}{6}}]$

分析 由题意可知y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,当k=-1时,即可求得函数的单调递增区间.

解答 解:y=2sin($\frac{π}{6}$-2x)=-2sin(2x-$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,函数单调递增,
解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,
x∈[-π,0],
∴当k=-1时,x∈[-$\frac{2π}{3}$,-$\frac{π}{6}$],
故答案选:C.

点评 本题考查正弦函数图象及性质,考查正弦函数的单调性及单调区间,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网