题目内容

19.如图,在矩形ABCD中,AB=$\sqrt{2}$,BC=2,点E在边BC上,点F在边CD上,若$\overrightarrow{DF}$=λ$\overrightarrow{DC}$,$\overrightarrow{CE}$=λ2$\overrightarrow{CB}$,则$\overrightarrow{AF}$•$\overrightarrow{FE}$的最大值为$\frac{1}{6}$.

分析 以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立直角坐标系,可得A(0,0),B($\sqrt{2}$,0),C($\sqrt{2}$,2),D(0,2),设E($\sqrt{2}$,n),F(m,2),运用向量共线的坐标表示,解得m,n,再由向量的数量积的坐标表示,结合二次函数的最值的求法,即可得到最大值.

解答 解:以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立直角坐标系,
可得A(0,0),B($\sqrt{2}$,0),C($\sqrt{2}$,2),D(0,2),
设E($\sqrt{2}$,n),F(m,2),
由$\overrightarrow{DF}$=λ$\overrightarrow{DC}$,可得m=$\sqrt{2}$λ,即F($\sqrt{2}$λ,2),
由$\overrightarrow{CE}$=λ2$\overrightarrow{CB}$,可得n=2-2λ2,即E($\sqrt{2}$,2-2λ2),
则$\overrightarrow{AF}$•$\overrightarrow{FE}$=($\sqrt{2}$λ,2)•($\sqrt{2}$-$\sqrt{2}$λ,-2λ2
=2λ(1-λ)-4λ2=-6λ2+2λ=-6(λ-$\frac{1}{6}$)2+$\frac{1}{6}$,
当λ=$\frac{1}{6}$时,则$\overrightarrow{AF}$•$\overrightarrow{FE}$取得最大值$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查向量的数量积的最值的求法,注意运用坐标法,考查二次函数的最值的求法,以及化简运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网