题目内容

3.已知函数f(x)=|x-a|.
(Ⅰ)若a=1,解不等式:f(x)≥4-|x-3|;
(Ⅱ)若f(x)≤1的解集为[0,2],$\frac{1}{m}+\frac{1}{2n}=a$(m>0,n>0),求mn的最小值.

分析 (Ⅰ)通过讨论x的范围,解各个区间上的x的范围,取并集即可;
(Ⅱ)求出a-1≤x≤a+1,根据f(x)≤1的解集为[0,2],求出a的值,根据基本不等式的性质求出mn的最小值即可.

解答 解:(Ⅰ)当a=1时,不等式为|x-1|≥4-|x-3|,
即|x-1|+|x-3|≥4,
∵|x-1|+|x-3|=$\left\{\begin{array}{l}{2x-4,x≥3}\\{2,1≤x<3}\\{4-2x,x<1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x≥3}\\{2x-4≥4}\end{array}\right.$或$\left\{\begin{array}{l}{1≤x<3}\\{2≥4}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{4-2x≥4}\end{array}\right.$,
∴解得x≤0,或x≥4,
故原不等式的解集为{x|x≤0,或x≥4}.…5分
(Ⅱ)f(x)≤1?|x-a|≤1
?-1≤x-a≤1?a-1≤x≤a+1,
∵f(x)≤1的解集为[0,2],
∴$\left\{\begin{array}{l}a-1=0\\ a+1=2\end{array}\right.⇒a=1$,…7分
∴$\frac{1}{m}+\frac{1}{2n}=1≥2\sqrt{\frac{1}{2mn}}({m>0\;\;,\;\;n>0})$,
∴mn≥2(当且仅当$\frac{1}{m}=\frac{1}{2n}=\frac{1}{2}$即m=2,n=1时取等号),
∴mn的最小值为2.…10分.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及基本不等式的性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网