题目内容
17.若z=(2+i)cosπ(i为虚数单位),则z=( )| A. | 2+i | B. | $\frac{2-i}{5}$ | C. | $\frac{2-i}{3}$ | D. | 1 |
分析 利用复数的运算法则、共轭复数的定义即可得出.
解答 解:z=(2+i)cosπ=$\frac{1}{2+i}$=$\frac{2-i}{(2+i)(2-i)}$=$\frac{2-i}{5}$.
故选:B.
点评 本题考查了复数的运算法则、共轭复数的定义、三角函数求值,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.“a2=1”是“函数$f(x)=lg({\frac{2}{1-x}+a})$为奇函数”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为( )
| A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
2.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则$z=\frac{9xy}{{9{x^2}+{y^2}}}$的取值范围为( )
| A. | $[{\frac{18}{13},\frac{3}{2}}]$ | B. | $[{\frac{45}{34},\frac{3}{2}}]$ | C. | $[{\frac{45}{34},\frac{18}{13}}]$ | D. | $[{\frac{18}{13},\frac{45}{34}}]$ |
6.设函数f(x)的定义域为D,若满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”.若函数f(x)=lnx+t为“倍缩函数”,则实数t的取值范围是( )
| A. | (-∞,ln2-1) | B. | (-∞,ln2-1] | C. | (1-ln2,+∞) | D. | [1-ln2,+∞) |
1.下列函数中,哪个函数在其定义域内是单调有界函数( )
| A. | f(x)=$\sqrt{x}$ | B. | f(x)=2x | C. | f(x)=sinx | D. | f(x)=arctanx |